Adducts of Silicon Tetrafluoride with Aminocyclophosphazenes: Synthesis and Characterization

Bettadapura S. Suresh, Vadapalli Chandrasekhar, and Doddaballapur K. Padma *

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

Stable solid adducts of SiF₄ with the following aminocyclophosphazenes have been synthesized: N₃P₃(NHCH₂CH₂NH)(NMe₂)₄, (1); N₃P₃(NHCH₂CH₂NH)Cl₄, (2); N₃P₃(NMe₂)₄Cl₂, (3); N₃P₃(NHMe)₆, (4); N₃P₃(NMe₂)₆, (5); N₄P₄(NHMe)₈, (6); N₄P₄(NMe₂)₈, (7); and N₄P₄(NHBu¹)₈, (8). They have been characterized by elemental analysis, i.r., and n.m.r. (¹H, ³¹P, and ¹⁹F) spectroscopy. The composition of the adducts varies depending on the ring size and also on the nature of the substituents on the phosphorus. The number of SiF₄ molecules accommodated by the ligands is larger when the ring size is large, while it is less when the ligands contain chlorine. Except in the cases of ligands (1) and (2), bonding is through the ring nitrogens. With (1), both exocyclic nitrogen and ring nitrogen atoms, and with (2) only exocyclic nitrogen atoms, participate in co-ordination. In these two cases the silicon is six-co-ordinated, while in the other cases it is five-co-ordinated.

Silicon tetrafluoride, a good Lewis acid, is known to form stable adducts with a variety of donor groups such as amines ¹ and a few with oxygen donors.²⁻⁴ There is not much information about adducts with ligands containing phosphorus and also with multidentate ligands containing more than two donor sites. The only relevant work is that of Beattie and Ozin⁵ who obtained addition compounds, SiF_4 ·PMe₃ and SiF₄·2PMe₃, at low temperature. However, no adduct formation has been observed between silicon tetrafluoride and triphenylphosphine even when the reactants are cooled to -96 °C.6 Therefore, it was of interest to see whether aminocyclophosphazenes, which behave as potential ligands towards suitable electron acceptors, having donor sites at ring nitrogen,⁷ exocyclic nitrogen,⁷ and phosphorus,⁸ would bond with silicon tetrafluoride. Preliminary studies indicated reaction with the eight cyclophosphazenes studied.

Experimental

Materials.-The following ligands were prepared by standard methods: 4,4,6,6-tetrakis(dimethylamino)-2,2-spiro-(ethylenediamino)cyclotriphosphazene, N₃P₃(NHCH₂-(1); 9,10 $CH_2NH)(NMe_2)_4$ 4,4,6,6-tetrachloro-2,2-spiro-(ethylenediamino)cyclotriphosphazene, N₃P₃(NHCH₂-CH₂NH)Cl₄ (2); ¹¹ 2-cis-4-dichloro-2,4,6,6-tetrakis(dimethylamino)cyclotriphosphazene, N3P3(NMe2)4Cl2 (3); 12 hexakis-(4): 13 $(methylamino)cyclotriphosphazene, N_3P_3(NHMe)_6$ hexakis(dimethylamino)cyclotriphosphazene, $N_3P_3(NMe_2)_6$ (5); 12 octakis(methylamino)cyclotetraphosphazene, N_4P_4 -(NHMe)₈ (6); ¹⁴ octakis(dimethylamino)cyclotetraphosphazene, $N_4P_4(NMe_2)_8$ (7); ¹⁴ and octakis(t-butylamino)cyclo-tetraphosphazene, $N_4P_4(NHBu^t)_8$ (8).¹⁵

Silicon tetrafluoride was prepared by fluorination of silicon tetrachloride with lead fluoride in acetonitrile.¹⁶ Its purity (99.8%) was checked by i.r. spectroscopy and chemical analysis. Diethyl ether was washed with cold water, dried over CaCl₂, and distilled over lithium aluminium hydride. Chloroform was washed with water, dried by refluxing over P₄O₁₀, and then distilled.

Preparation of the Adducts.—The reaction vessel consisted of a round-bottomed flask (250 cm³) fitted with standard joints and vacuum stopcocks. A known amount of the ligand was dissolved in a suitable solvent (100 cm³) and placed in the reaction vessel. The latter was connected to a glass globe

containing a known amount of SiF₄. The solution was frozen in liquid nitrogen and the air was pumped out of the system. After bringing the contents of the flask to room temperature, a four-fold excess of SiF₄ was added by opening the interconnecting stopcocks. In all cases immediate formation of a precipitate was observed. The reaction mixture was stirred with a magnetic pellet for a few hours. The excess of unreacted SiF₄ remaining after the reaction was condensed back into the glass globe along with some vapours of the solvent. The flask was detached from the assembly and filled with dry nitrogen. The precipitate was filtered off under suction in a dry nitrogen atmosphere, washed with the solvent as quickly as possible, and dried under vacuum. The amount of unreacted SiF4 was determined after dissolving the solvent vapours in benzene and freezing out the benzene at -80 °C.¹⁶ By measuring the pressure and volume of SiF₄ at constant temperature before and after the experiment the stoicheiometry of the reaction could be determined.

The experimental procedure adopted for the synthesis of adducts of ligands (4) and (6) was slightly different. These ligands are not soluble in solvents such as diethyl ether and benzene, but slightly soluble in chloroform at room temperature, and completely soluble in boiling chloroform. Suspensions of these ligands were treated with SiF₄ for 12 h with continuous stirring at room temperature. The solids were then filtered off, washed with hot chloroform, and dried under vacuum. Details of the preparation of the individual adducts are given in Table 1.

Characterization of the Adducts.—The adducts were characterized by i.r., n.m.r., and analytical data. The i.r. spectra in the range $400-4\ 000\ \text{cm}^{-1}$ of the pure ligands and the adducts were recorded using Nujol mulls and a Perkin-Elmer 599 spectrophotometer. The important absorption bands are assigned in Table 2.

Proton n.m.r. spectra were recorded for CDCl₃ solutions with SiMe₄ as internal standard using a Varian T-60 spectrometer. Phosphorus-31 and ¹⁹F n.m.r. spectra were recorded for CD₃CN solutions with 85% H₃PO₄ as external standard and CFCl₃ as internal standard respectively. Bruker WH 90, operating at 36.431 MHz, and WM250, operating at 233 MHz, instruments were used for recording ³¹P and ¹⁹F spectra respectively. The chemical shifts are expressed in terms of the δ scale, with upfield shifts negative (Table 3). The analytical data are given in Table 4.

Ligand Solvent	Reaction	Amount (mmol)			Combining		Solubility of adduct		
	Solvent	time (h)	Ligand	SiF₄	Reacted SiF₄	ligand: SiF ₄	Adduct	in CHCl ₃ and CH ₃ CN	Nature of adduct
(1)	OEt ₂	6	7.89	32.55	12.23	2:3	(1a)	Soluble	White, powdery hygroscopic solid
(2)	OEt ₂	6	6.75	29.50	6.81	1:1	(2a)	Insoluble	Slightly yellowish hygroscopic sticky solid
(3)	OEt ₂	6	3.45	16.24	3.39	1:1	(3a)	Soluble	White, powdery hygroscopic solid
(4)	CHCl3	10	6.56	28.45	10.04	2:3	(4a)	Insoluble	White, powdery hygroscopic solid
(5)	OEt ₂	6	2.95	13.35	4.57	2:3	(5a)	Soluble	White, powdery non-hygroscopic solid
(6)	CHCl3	10	4.85	19.65	15.04	1:3	(6a)	Insoluble	Slight yellowish sticky, hygroscopic solid
(7)	OEt ₂	6	3.47	16.24	10.59	1:3	(7a)	Soluble	White, powdery, non-hygroscopic solid
(8)	OEt ₂	6	4.25	18.85	8.63	1:2	(8a)	Soluble	White, powdery non-hygroscopic solid

Table 1. Preparation of adducts of silicon tetrafluoride with aminocyclophosphazenes

Table 2. Infrared spectral data (cm⁻¹) of aminocyclophosphazene adducts of silicon tetrafluoride and the free ligands

				v(Si-F)/	
Compound	v(N-H)	v(P=N)	v(Si-F)	v(P-N=P)	δ(Si-F)
(1)	3 360m, br	1 200s			
.,	3 230m, br				
(ia)	3 250m	1 180s	730s	900s	480m
	3 180m	1 260s	750s		
			760s		
(2)	3 430m, br	1 205s			
	3 350m, br				
(2a)	3 350m, br	1 220s	730s	890w	470m
	3 250m, br	1 250s	760(sh)		
	3 200m, br				
(3)		1 200s			
		1 230s			
(3a)		1 190s	750s	900m	480m
		1 230s			
		1 260s			
(4)	3 330m, br	1 175s			
	3 200m, br				
(4a)	3 290m, br	1 275s	730s	900m	475m
	3 250m, br		750s		
	3 160m, br				
(5)		1 200s			
(5a)		1 180s	770s	900s	470m
(6)	3 400m, br	1 215s, br			
	3 270m, br				
(6a)	3 350m	1 300s, br	730s		
	3 150m		760(sh)	900m	475w
(7)		1 265s			
(7a)		1 310s	770s	900s	480m
		1 340s	790(sh)		
(8)	3 430m	1 230s, br			
	3 350m				
(8a)	3 380m	1 200s	730s	920 s	480m
	3 320m	1 240s	750s		
	3 250s, br	1 320s			

Results and Discussion

It is evident from the experimental results that SiF_4 forms stable adducts of various compositions depending on the nature of the aminocyclophosphazenes. The possible sites of co-ordination are (*i*) the endocyclic nitrogen, (*ii*) the exocyclic nitrogen, and (*iii*) the ring phosphorus.

In several studies reported on similar adducts, the effect of complex formation is reflected in the i.r. spectra of the complexes. The major effect of σ donation of a nitrogen lone pair of electrons will be on the in-plane bonding system.¹⁷ In general, the i.r. spectra are more complex than those of the free ligands, and v(P=N) undergoes a positive shift of 40—200 cm^{-1, 18, 19} The effect of co-ordination through the endocyclic nitrogen can also be seen in the ¹H n.m.r. spectrum of the substituents. The NH proton in N₃P₃[NH(CH₂)₂CH₃]₆ undergoes a downfield shift of about δ 1.4 upon adduct formation, while the CH₃ and CH₂ protons do not undergo any change in chemical shift.²⁰ It has also been observed that the ³¹P n.m.r. chemical shifts of the adducts move upfield compared to those of the ligands.^{18,21}

Silicon tetrafluoride forms five- and six-co-ordinated adducts (1:1 and 2:1, ligand: SiF₄) with unidentate ligands depending on the experimental conditions, the latter being more common than the former.¹⁸ In six-co-ordinated SiF₄ adducts, which have octahedral structures, the v(Si-F) frequency of SiF₄ at 1 031 cm⁻¹ undergoes a negative shift of about 300 cm^{-1,3,22-24} The five-co-ordinate, 1:1 adducts of SiF₄ can have either a trigonal bipyramidal or tetragonal pyramidal structures. The v(Si-F) in these cases 6 are found to lie in the region 900-1 000 cm⁻¹. The ¹⁹F n.m.r. spectra are characteristic of five- or six-co-ordination in silicon fluorides; chemical shifts for the series SiF_4 , SiF_5^- , and SiF_6^{2-} are δ 160.3, 136.0, and 128.2 respectively against CCl₃F as internal standard.²⁵ This was made use of in concluding that the silicon in SiF₄·Pt(PPh₃)₂ is five-co-ordinate, the ¹⁹F spectrum at room temperature in acetone consisting of a singlet at δ 137.3.⁶

In the light of the above observations, the bonding in the present adducts will now be discussed.

Adducts with Ligands (1) and (2). $-2N_3P_3(NHCH_2CH_2NH)-(NMe_2)_4 \cdot 3SiF_4$, (1a). The v(P=N) absorption band has undergone a positive shift accompanied by splitting, Table 2,

Table 3. N.m.r. data * for the adducts of silicon tetrafluoride and for the pure ligands

Compound	¹ H	³¹ P	¹⁹ F
(1)	NH 2.2, NCH ₃ 2.6,		
	NCH ₂ 3.34		
(la)	NH 7.2, NCH ₃ 2.63,		-131.42, -131.33
	NCH ₂ 3.4		-131.29, -131.25
(3)	NCH ₃ 2.78		
(3a)	NCH ₃ 2.80		
(5)	NCH ₃ 2.55	24.6	
(5a)	NCH ₃ 2.70	19.58	-137.04
(7)	NCH ₃ 2.63	9.6	
(7a)	NCH ₃ 2.73	7.71	-137.0
(8)	NH 2.20, NBu ^t 1.28	- 3.1	
(8a)	NH 3.63, NBu ^t 1.40	- 1.98	-136.87
			and the second

* Chemical shifts are expressed in terms of the δ scale, with upfield shifts negative.

indicating that the ring nitrogens are involved in co-ordination. The v(N-H) frequencies have suffered a negative shift and the n.m.r. resonances of the NH protons have shifted substantially downfield (δ 5.0), suggesting that the exocyclic nitrogens of the ethylenediamine group also participate in co-ordination. The strong band at 900 cm⁻¹ in the i.r. spectrum

could be assigned to a P-N=P linkage,²⁰ or to a five-coordinated SiF₄ adduct. The ¹⁹F n.m.r. spectrum shows a broad signal centred around δ -131, suggesting that the silicon is six-co-ordinate. Thus, the band at 900 cm⁻¹ could be assigned to a ligand vibration and those at 700-800 cm⁻¹ to v(Si-F). Based on the above observations, adduct (1a) contains six-co-ordinated silicon and both exocyclic and endocyclic nitrogens participate in this co-ordination. This mode has been noted in a few other complexes of cyclophosphazenes.^{26,27} The composition 2 : 3 suggests that the adduct is an equimolar mixture of 1 : 1 and 1 : 2 six-co-ordinated silicon adducts.

 $N_3P_3(NHCH_2CH_2NH)Cl_4\cdot SiF_4$, (2a). The non-participation of ring nitrogens can be seen in the moderate increase in the v(P=N) frequency of about 30 cm⁻¹ on adduct formation, compared to the other adducts. However, the v(N-H) absorptions have undergone a substantial negative shift (100 cm⁻¹) indicating that the ethylenediamino-nitrogens are involved in co-ordination with SiF₄. The single strong band of v(Si-F) at 730 cm⁻¹ indicates that silicon is six-co-ordinate. The non-participation of the ring nitrogens could be due to the presence of four chlorine atoms in the ring which makes the endocyclic nitrogens more basic.

Adducts with Ligands (3)—(8).—N₃P₃(NMe₂)₄Cl₂·SiF₄, (3a), 2N₃P₃(NHMe)₆·3SiF₄, (4a), 2N₃P₃(NMe₂)₆·3SiF₄, (5a), N₄P₄(NHMe)₈·3SiF₄, (6a), N₄P₄(NMe₂)₈·3SiF₄, (7a), and N₄P₄(NHBu')₈·2SiF₄, (8a). In the above six adducts a general pattern is observed. There is an increase in the v(P=N) frequency accompanied by splitting in the i.r. spectrum indicating that only endocyclic nitrogens are involved in coordination. This is supported by the observation that the NCH₃ protons have undergone only a very small downfield shift of about δ 0.02 upon adduct formation, which indicates that the exocyclic nitrogens are not involved in bonding with SiF₄. The appearance of v(Si-F) absorptions in the region 700—800 cm⁻¹ and also at 900 cm⁻¹ suggests that silicon is five-co-ordinated. This is supported by the ¹⁹F n.m.r. spectra

Table 4. Analytical data for the adducts of silicon tetrafluoride with aminocyclophosphazenes

	Elemental analysis (%)						Composition		
Adduct	Calc.			Found			of adduct	M.p. (°C)	
	C	Н	N	C	Н	N	ligand: SiF₄	Pure ligand	Adduct
(la)	22.85	5.70	24.0	23.05	6.3	23.85	2:3	138	149—152 (decomp.)
(2 a)	5.45	1.35	15.95	5.60	1.65	15.45	1:1	198	225-230 (decomp.)
(3a)	19.75	4.95	20.15	19.75	5.35	20.20	1:1	104	145-150
(4a)	15.3	5.10	26.75	15.7	5.80	26.7	2:3	257	200 (decomp.)
(5a)	25.95	6.50	22.7	26.3	6.80	22.6	2:3	104	160—170 (sublim.)
(6a)	13.1	4.35	22.95	13.1	5.00	22.6	1:3	206	260—268 (charg.)
(7a)	22.75	5.70	19.9	23.35	6.35	20.45	1:3	230237 (decomp.)	160
(8a)	40.15	8.30	17.55	40.55	8.80	17.55	1:2	180-200 (decomp.)	220-235 (decomp.)

which show a single sharp signal at $\delta - 137$ characteristic of five-co-ordinated silicon fluorides. The ³¹P n.m.r. spectra also show an upfield shift which is characteristic of cyclophosphazene complexes, except in the case of (8a), having a composition 1:2, which shows a downfield shift on complexation.^{18,21} A downfield shift on complexation occurs only in the case of adduct (8a).

The composition of the adducts, 2:3 or 1:3, indicates that they are equimolar mixtures of 1:1 and 1:2 and 1:2 and 1:4 adducts respectively. This has been observed with other SiF4 adducts.^{5,28-30} It seems that steric factors determine the co-ordination number of silicon, the bulky ligands favouring five-co-ordination.^{31,32} Among the adducts (1a)---(8a) we see a regular trend in composition which can be attributed to steric as well as electronic factors. For instance, (i) the combining ratio (ligand: SiF_4) varies from 1:1 and 1:2 in the case of trimeric ligands to 1:2 and 1:4 in the case of tetrameric ligands. This can be explained on the basis of the ring size of the ligands. (ii) Even when the ring size is the same the composition varies. This can be attributed to the nature of the substituents present in the ligand molecules. Considering the adducts (1a)-(5a), the trimeric phosphazenes, it is clear that the ligands which do not contain any chlorine co-ordinate a larger number of SiF4 molecules than those which contain chlorine. This might be due to electronic factors; chlorine being highly electronegative draws the electron density towards itself making the ring nitrogens less basic. It was observed in the present investigation that SiF4 does not form any adduct with hexachlorocyclotriphosphazene $(N_3P_3Cl_6)$. On the other hand, the variation in composition of adducts (6a)-(8a) of tetrameric phosphazenes can be explained on the basis of steric factors. Here the substituents on the phosphazene rings are of similar electronegativity and none of the ligands contains chlorine; t-butyl being more bulky than methyl, ligand (8) can accommodate fewer SiF_4 molecules than ligands (6) and (7).

Acknowledgements

Two of us (B. S. S. and V. C.) are grateful to the Department of Atomic Energy, India and the Council of Scientific and Industrial Research, India respectively for financial assistance. We also thank Dr. M. Woods, Professor S. S. Krishnamurthy, and Professor A. R. Vasudevamurthy for their help in obtaining some analytical data and useful discussions.

References

- 1 J. P. Guertin and M. Onyszchuk, Can. J. Chem., 1969, 47, 1275.
- 2 K. Issleib and G. Reinhold, Z. Anorg. Chem., 1962, 314, 113.
- 3 V. Gutman and K. Utvary, Monatsh. Chem., 1959, 90, 706.

- 4 T. S. Piper and E. G. Rochow, J. Am. Chem. Soc., 1954, 76, 4318.
- 5 I. R. Beattie and G. A. Ozin, J. Chem. Soc. A, 1969, 2267.
- 6 T. R. Durkin and E. P. Schram, Inorg. Chem., 1972, 11, 1048.
- 7 H. P. Calhown, N. L. Paddock, and J. N. Wingfield, Can. J. Chem., 1975, 53, 1765.
- 8 A. Schmidpeter, K. Blanck, H. Hess, and H. Riffel, Angew. Chem., Int. Ed. Engl., 1980, 19, 650.
- 9 S. S. Krishnamurthy, K. Ramachandran, A. R. Vasudevamurthy, R. A. Shaw, and M. Woods, *Inorg. Nucl. Chem. Lett.*, 1977, 13, 407.
- 10 K. Ramachandran, Ph.D. Thesis, Indian Institute of Science, Bangalore, 1978, p. 74.
- 11 S. S. Krishnamurthy, K. Ramachandran, A. R. Vasudeva Murthy, R. Keat, R. A. Shaw, and M. Woods, J. Chem. Soc., Dalton Trans., 1980, 840.
- 12 R. Keat and R. A. Shaw, J. Chem. Soc., 1965, 3215.
- 13 S. K. Ray and R. A. Shaw, J. Chem. Soc. 1961, 872.
- 14 S. K. Ray, R. A. Shaw, and B. C. Smith, J. Chem. Soc. 1963, 3236; ref. 10, p. 120; A. C. Sau, Ph.D. Thesis, Indian Institute of Science, Bangalore, 1975, p. 102.
- 15 S. S. Krishnamurthy, A. C. Sau, A. R. V. Murthy, R. Keat, R. A. Shaw, and M. Woods, J. Chem. Soc., Dalton Trans., 1977, 1980.
- 16 D. K. Padma, B. S. Suresh, and A. R. Vasudeva Murthy, J. Fluorine Chem., 1979, 14, 327.
- 17 G. E. Coxan and D. D. Sowerby, J. Chem. Soc. A, 1969, 3012.
- 18 S. S. Krishnamurthy, A. C. Sau, and M. Woods, Adv. Inorg. Chem. Radiochem., 1978, 21, 41.
- 19 M. F. Lappert and G. Srivastava, J. Chem. Soc. A, 1966, 210.
- 20 T. Moeller and S. J. Kokalis, J. Inorg. Nucl. Chem., 1963, 25, 275.
- 21 V. Chandrasekhar, S. S. Krishnamurthy, and M. Woods, ACS Symp. Ser., 1981, 171, 99, 481.
- 22 E. Schnell, Monatsh. Chem., 1962, 93, 1136.
- 23 W. C. Schumb and P. E. Cook, J. Am. Chem. Soc., 1953, 75, 5133.
- 24 E. Schnell, Monatsh. Chem., 1962, 93, 65.
- 25 P. Klanberg and E. L. Muetterties, Inorg. Chem., 1968, 7, 155.
- 26 H. P. Calhoun, N. L. Paddock, and J. Trotter, J. Chem. Soc., Dalton Trans., 1973, 2708.
- 27 V. Chandrasekar, Ph.D. Thesis, Indian Institute of Science, Bangalore, 1982, p. 148.
- 28 D. B. Miller and H. H. Sisler, J. Am. Chem. Soc., 1955, 7, 4998.
- 29 I. R. Beattie and G. A. Ozin, J. Chem. Soc. A, 1970, 370.
- 30 B. S. Ault, Inorg. Chem., 1981, 20, 2817.
- 31 E. L. Muetterties, J. Am. Chem. Soc., 1960, 82, 1082.
- 32 S. A. Andronati, A. V. Bogtskii, Yu. I. Vikhlyaev, A. I. Zhilina, V. N. Kats, T. A. Klygul, V. M. Khudykova, T. K. Chumechenko, and A. A. Ennan, *Zh. Obshch. Khim.*, 1970, 40, 1881.

Received 3rd May 1983; Paper 3/710